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Figure 1. The R/V Atalante and the flux mast on the meteorological tower of the front deck 

Flux mast 



1.Introduction 
This document is based on the first work by Geyskens et al. (2019), in which the instruments are 

described as well as the logbook and the first Figures describing the data of the flux mast. In the 

present document, we recall the basic instrumental setup described in Geyskens et al. (2019), next 

we provide a detailed comparison of meteorological data, and we estimate the air-sea turbulent 

fluxes. We compare the ship data to the OCARINA platform data. Last, we provide a flux dataset with 

error bars and we give recommendations for improving the flux mast for the future campaigns. 

1.1 Flux mast location and instruments 
As part of the EUREC4A project (H. Bellenger, S. Speich, LMD), the “flux mast” national instrument 

was installed on the Reseach Vessel R/V Atalante from Genavir. The flux mast holds instruments that 

measure atmospheric turbulence and meteorological variables. The collected data are used to 

estimate the turbulent fluxes of momentum and heat at the air-sea interface. Specifically, the flux 

mast instruments measure  air pressure, air temperature, humidity, air refraction index, CO2, H2O, 

the three components of the wind vector, and the upward and downward solar and infrared 

radiation fluxes. The fluxes calculated are the latent and sensible heat fluxes, the momentum (or 

equivalently, the friction velocity), the aerodynamic roughness height, and the Monin-Obukhov ratio, 

which describes the dynamic stability of the surface boundary layer. 

The exact location of the flux mast is shown in Figure 1. It is also represented in Figure 2, which is a 

scale representation of the ship. 

 

 

 

Figure 2. Side view of the R/V ATALANTE 
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Figure 3. Instruments of the flux mast 

There are six instruments on the flux mast (Figure 3), namely:   

 A prototype microwave refractometer (developed at LATMOS laboratory, see Delahaye et 

al., 2001): air refraction index, sampled at 50 Hz 

 A BEI motion pack Inertial Motion Unit: Six degrees of freedom (three linear accelerations, 

three angular velocities), sampled at 50 Hz 

 A Gill HS-50 sonic anemometer: u, v, w wind components, and sonic temperature, at 50 Hz 

 A Campbell Li-Cor LI 7500 DS instrument: CO2 (µmol/mol, mol/m3, absorbance), H2O 

(µmol/mol, mol/m3, absorbance), dew point, at 20 Hz  

 A weather station Vaisala WXT 520: Air temperature, relative humidity, and atmospheric 

pressure, wind direction, wind speed, and precipitation, at 1 Hz 

 A Campbell CNR4 pyranometer and pyrgeometer: Upward and downward radiation fluxes 

(solar and infrared) at 1 Hz 

 A GPS: position, followed route, and ship speed, at 1 Hz. 

For the data processing, ancillary data are also used. They are routinely collected inboard: GPS data 

(position, route and speed), meteorological variables (instruments on the central mast), and the sea 

surface temperature. 

Four persons were involved in the setup and in the data processing of the flux mast: Nicolas 

Geyskens (DT-INSU) was on board during the campaign, Aurélien Clémençon  (DT-INSU) and Hervé 
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Barrois (DT-INSU) helped to set up the flux mast, and Denis Bourras (MIO) was in Marseille to process 

the data. 

The data are acquired on two personal computers (PCs). There are several data time stamps 

recorded: 

 On the first PC (PC-flux) : 

o Meteorological, position, and radiation data are transmitted by a Campbell CR1000 

system placed on the mast, through a serial line (WXT, GPS, and CNR4) at ~1 Hz. 

There are gaps in the data file (data lines missing), and some entire files were lost, 

due to connection issues. Three types of time data are recorded for each line of data: 

the internal CR1000 time (not used), the PC-FLUX time, and the GPS UTC time. 

o Gill, BEI, and refractometer data are collected at ~50 Hz in two distinct data files. 

There are no time data recorded, thus the time is deduced from the name of the file, 

which contains the PC-FLUX time, plus the number of lines (normally 90 000 for a 30’ 

file received). We noted that systematically, some lines of data were lost in the 

Gill/BEI files (next section). 

 On the second PC (PC-Licor) : 

o Licor files were recorded at 10 Hz during the first week, then at 20 Hz. The time of 

the PC is recorded, at the nanosecond. Unfortunately, the PC-Licor time fluctuates 

and is periodically readjusted in an unpredictable manner against GPS data (see next 

section). Some files are missing. 

1.2 Missing data and time issues 

1.2.1 Gill, BEI, and refractometer data 

Gill files contain sonic data (wind, temperature) plus BEI data that are acquired through dedicated 

input ports in the Gill data acquisition system. 

Each Gill file is named as YYMMDDHHMMSS.Gill (e.g. 200122000253.Gill). The Gill files are text files 

that contain data lines at 50 Hz. There should be 90 000 lines per file (they are half-hour files), but 

some lines are systematically missing (Figure 4). One outlier (a 50 000 line-file) was omitted in Figure 

4). 

 

Figure 4. Missing number of lines in Gill-BEI files 



At maximum, 6 lines are lost, which corresponds to 6/1800=0.033 seconds per half-hour. This has a 

negligible impact on the rest of the study, because each file is named independently from the others. 

More problematic is the drift of the PC-FLUX clock (see hereafter). 

The refractometer files are named as YYMMDDHHMMSS.Refrac. For memory, please note that on 

top of each data line is a data counter, which is modulo 16 (not used here). The number of lines is 

well respected for each data file (90 000). 

There is no good option for correcting time when there are missing lines in the Gill-BEI files. As a 

choice, we joined to each data line a time stamp calculated with the time of the file name (time of 

the first data) plus a time increment set to 1/50 second per line of data. 

1.2.2 Issues with Licor data 

Over the entire data set, the time difference between two successive measurements can reach 

several hours (revealing the gaps in data files, Figure 5). 

 

Figure 5. Gaps in Licor data 

If we zoom on small time differences (Figure 6), we see that the sample rate was set from 10 Hz to 20 

Hz at 1/3 of the experiment.  

 

Figure 6. Zoom in Figure 5 data, between 0 and 200 ms of time difference 



1.2.3 Drift of PC-FLUX clock 

In the CR1000 files, the PC-FLUX time is recorded in addition to the GPS time. Thus, the difference 

between the two time-series can be analyzed (Figure 7). It reveals that several sequences of about 

20’-30’ are missing. In the details, the global trend of the time difference is negative, on the order of 

4 sec per day, which sums up to 100 seconds at the end of the experiment (Figure 8).  

 

Figure 7. Time difference between the PC-FLUX clock and the GPS time 

 

Figure 8. Zoom in Figure 7 data 

After data cleaning, i.e. after deletion of the lines that were received twice and of the lines for which 

the time was not recorded, which happened several times during the campaign, we obtain a more 

explicit plot (Figure 9). 

  

Figure 9. PC-FLUX time drift, after data cleaning, over the whole campaign 



For the data processing, we tested two options: (1) interpolating all data on GPS times when possible 

and (2) using the PC-FLUX time as a reference time, despite its gradual drift. The second option gave 

better results and was kept. With this choice, rapid data such as Licor data have a time difference 

with respect to Gill data, which has consequences on latent heat flux values estimated with the Eddy 

Covariance method (EC method hereafter, section 3).   

The BATOS data (routine ship data) also have a time shift with respect to the PC-FLUX time. However, 

it is less problematic for the 1 100 second time averages used throughout the manuscript than for 

rapid data such as Licor, as mentioned above. 

As a summary, the PC-FLUX time is used for CR1000, Gill-BEI, and refractometer data, the PC-Licor 

time is used for Licor data, and the ship time (GPS) is used for BATOS data. 

1.3 First overview of meteorological data 

1.3.1 Comparison between WXT, CNR4, and BATOS data  

Pressure, temperature, the radiation solar flux, and humidity were measured by several 

meteorological instruments (WXT, CNR4, refractometer, Licor, and BATOS data). Prior to any 

synchronization effort, it is already possible to compare them qualitatively, which gives an indication 

on the time extent over which each instrument was operational.  

The WXT, CNR4 and BATOS data are available on a common range from 22 January at 3h00 UTC to 17 

February at 18h00 UTC. Some sensors stopped functioning correctly after 15 days of experiment. 

Pressure data from the WXT and the BATOS stations have a good visual fit to each other (Figure 10). 

However, the refractometer pressure data started to drift at day 17. Gaps are present in Licor 

pressure data (data in orange), which reveals conditions for which the R/V was not facing wind (see 

hereafter). 

 

Figure 10. Atmospheric pressure measured by three sensors 

 

Figure 11. Air temperature measured by three sensors 



The plot for air temperature further confirms that gaps in LICOR data correspond to rear wind 

conditions (not filtered out at this stage of the processing), as shown in Figure 11. LICOR 

temperatures have an overall negative bias with respect to WXT data, and have are more noisy. The 

refractometer temperature sensor stopped functioning from day 13. 

Humidity data from the LICOR and the WXT have a good fit to each other (Figure 12). 

 

Figure 12. Air specific humidity measured by three sensors 

The solar downward flux is measured by the BATOS system (on the top of the central mast of the 

ship, thus with no possible shadow effect, unlike with WXT data that are measured on the 

meteorological mast at the bow of the ship). A first comparison between BATOS and WXT data 

reveals that BATOS data have a threshold value at ~1040 W/m2, which does not happen with WXT 

data (Figure 13). 

 

Figure 13. Incident solar flux measured by the BATOS system and by the CNR4 instrument 

1.3.2 Known issues with the WXT sensors  

The resolution of air temperature is 0.1°C and the resolution in atmospheric pressure is 0.1 hPa, 

which results in tabulated data (Figures 14, 15). 

 

 



 

Figure 14. Tabulation effect in WXT air temperature data 

 

Figure 15. Tabulation effect in WXT atmospheric pressure data 

Due to the location of the CNR4 at the top of the bow mast, the down-looking solar and infrared 

sensors are in direct view of the front deck, the temperature of which may be overestimated under 

the effect of solar warming, which may affect the upward flux data (Figures 16, 17). As a 

consequence, upward CNR4 fluxes are not used in the rest of the study. An albedo of 0.02 is used for 

deducing the upward solar flux from its incoming counterpart. For the upward infrared flux, the Sea 

Surface Temperature (SST) is used, with an emissivity of 0.98. 

 

Figure 16. Solar flux from CNR4 data 



 

Figure 17. Infrared fluxes from CNR4 data 

1.4 Application of quality criteria 
The data processing for flux estimation fully corresponds to the existing Albatros flux processing code 

developed for the OCARINA platform, which is available at: 

 (https://gitlab.osupytheas.fr/bourras.d/albatros_public_distrib/-/blob/master/README.md).  

During the processing, each day of the experiment is divided in time intervals of 1 100 seconds, 

which is the integral time of turbulence. For example, it means that the air temperature data output 

from the flux algorithm corresponds to averages over 1 100 second-intervals. Data are selected 

according to the following criteria, which are intended to provide a basic non supervised cleaning of 

the data:  

 max_anguh, Float, [ 40.]. Maximum azimuth angle tolerated, in degrees (the wind angle with 

respect to the bow of the ship, to avoid flow distortion that occurs when the wind comes 

from the side or from the rear of the R/V) 

 minmax_angle, Float, [ 50.]. Maximum variation of the azimuth angle tolerated during the 

time interval, in degrees (to make sure that the R/V is not turning) 

 std_angle, Float, [ 10.]. Maximum tolerated for the standard deviation of the azimuth angle 

during the time interval, in degrees 

 minmax_fit_angle, [ 30.]. Maximum tolerated variation for the linear fit to the azimuth angle 

values along the time interval, in degrees 

 vbf_minmax, Float, [ 2.]. Maximum tolerated variation of the 3rd degree fit to ship speed, in 

m/s (to make sure that the ship is not accelerating or decelerating) 

 vbf_moy_min, Float, [ 0.]. Minimum ship speed in m/s 

 eps_refracto, Float, [  1.00000000e-06]. Convergence condition for refractometer humidity 

calculation 

 ibo_max_refracto, Int, [ 20.]. maximum number of iterations for refractometer humidity 

calculation 

 min_ta, Float, [2.]. Minimum acceptable air temperature (Celsius) 

 min_sst, Float, [5.]. Minimum acceptable sea surface temperature (Celsius) 

 min_psurf, Float, [900.]. Minimum acceptable atmospheric pressure (hPa) 

 min_hr, Float, [20.]. Minimum acceptable relative humidity (0-100) 

 max_diff_time, Float, [2.]. Maximum acceptable time gap between two successive samples 

of the time interval in process (seconds) 

https://gitlab.osupytheas.fr/bourras.d/albatros_public_distrib/-/blob/master/README.md


 percent_data, Float, [100.]. Minimum percentage of valid data in the processed time interval 

required to proceed with the flux calculation (0-100) 

 lmo, Float, [9999.]. First  ID algorithm convergence condition. Maximum value of the Monin-

Obukhov length tolerated during ID calculation 

 eps_zlidm, Float, [1e-5]. Second ID algorithm convergence condition. Convergence is 

obtained when the absolute value of the difference between two successive evaluations of 

the Monin-Obukhov ratio is smaller than this value 

 ibo_max, Float, [50]. Third ID algorithm convergence condition. Maximum number of 

iterations tolerated for convergence 

Out of the 27 days of the experiment, the application of the above criteria reduce the number of 

data to 140 useful hours (5.84 days), which represents a rate of return of 22 %. Please note the maps 

does not show the numerous CTD stations when the R/V was standing (Figure 18). 

 

Figure 18. Map of the EUREC4A Atalante cruise (white dots). The data retained for flux calculation are 

plotted in red. 

 

  



2. Meteorological data 

2.1 Data from slow instruments (WXT, CNR4 et BATOS) 

The comparisons between WXT and BATOS data are good in terms of correlation coefficients. 

However, biases are present (Figure 19).  

For atmospheric pressure, the bias is not significant (0.05 hPa).  

For air temperature, the BATOS data are underestimated by -0.1°C which is small, and may be true 

because BATOS data are taken about ten meters above WXT data, and the boundary layer is 

convective most of the time, which means that temperature decreases with altitude. 

The BATOS relative humidity is larger by 4% than the WXT humidity, which translates into a large bias 

of 0.8 g/kg in terms of specific humidity. 

 

Figure 19. Comparison between WXT and BATOS data for 1 100-second averages 

The comparison between WXT and BATOS wind data is good. However, a group of points are 

overestimated by the BATOS data. The overall bias is positive (+0.6 m/s for BATOS data, Figure 20), 

which is compatible with the idea that wind increases with altitude. 

The wind direction data from the BATOS and the WXT data are in good agreement. Please note that 

at large wind angles, a distortion effect is noticeable. The effect is not symmetrical and it depends on 

the side from which the wind blows on the sensors. 



 

Figure 20. Comparison between WXT and BATOS data for 1 100-second averages 

The overestimated outlier points in Figure 20 (left) are not elucidated. We checked that they did not 

occur for a single day, but that they occurred episodically all along the experiment (not shown). 

The downward solar flux data from the BATOS are slightly overestimated (~5 W/m2) compared to 

the CNR4 data, which may reveal some shadow effects on the CNR4 sensors (Figure 21). The 

threshold at 1 040 W/m2 previously noted translates here into a slight underestimation of the largest 

BATOS data. The standard deviation is significant (20 W/m2) and is considerably smaller at small flux 

values (< 200 W/m2). 

 

Figure 21. Comparisons for the incoming solar flux 

 

 

 



2.2 Comparison to fast sampling rate instruments 

2.2.1 Sonic anemometer data 

2.2.1.1 Wind 

The « apparent » wind vector is measured by the Gill and the WXT instruments, which are not at the 

same altitude: the WXT is ~1 m below the Gill instrument. The Gill is one meter ahead with respect to 

the WXT, which is closer to potential aerodynamic obstacles such as the mast (Figure 3). The 

observed module of the wind vector is smaller by -0.4 m/s according to Gill data than to WXT data 

(Figure 22). 

The comparison also indicates a slope of linear fit that is significantly far from unity (0.86), which 

means that strong winds are more overestimated by the WXT. We suspect here that the WXT is the 

object of a local flow distortion (Venturi) effect. As already observed with respect to the BATOS data 

(Figure 20), a group of points are strongly underestimated by the WXT, which is attributed to an 

effect of distortion. It is not fully explained by the difference in wind direction from the Gill and the 

WXT (Figure 22, right), although the large angles have more bias than the small angles. If these 

outlier points are not accounted for, the bias between Gill and WXT data is -0.76 m/s, which is large. 

 

Figure 22. Comparisons between Gill and WXT wind speed (left) and apparent direction (right) 

The comparison between Gill and BATOS wind data brings a new point of view as the group of outlier 

points no longer appears. As a result, the outliers occur only with WXT data. The standard deviation 

of the difference between Gill and BATOS data is good, 0.4 m/s, but the slope of linear fit to data is 

still smaller than unity (0.89).  

The bias of Gill minus WXT wind speeds is 1 m/s, which is large. A quick calculation of wind difference 

at the two altitudes of the Gill and the WXT results in an expected wind difference of u*/kappa 

ln(20/15)= 0.2 m/s, for a height difference of 5 m. Therefore, the large 1 m/s bias is rather explained 

by distortion effects that differ according to the location of the sensors than by a height difference. 

The bias both corresponds to suspected effects of (1) slow-down of the wind at the location of Gill 



data, and (2) artificial increase of the wind at the level of the BATOS sensor (Venturi effect). 

Simulations were already performed around the body of the Atalante in Bourras et al. (2009). The 

simulations revealed that wind speed was reduced, but only by -0.2 m/s at the level of the Gill 

instrument at 0° wind angle (Figure 5a in Bourras et al., 2009). The simulations also predicted the 

overestimation of the direction at the large wind angles. Unfortunately, the simulations were not 

analyzed at the location of the BATOS wind sensor. 

 

Figure 23. Comparisons between Gill and BATOS wind speed 

In doubt, hereafter, Gill data are considered as reference data and a negative bias of -0.2 m/s has to 

be accounted for giving error bars. 

2.2.1.2 Sonic temperature 

The sonic air temperature is output from Gill data. It is possible to convert WXT air temperature and 

humidity to equivalent sonic temperature data. The comparison between Gill and WXT sonic 

temperatures reveals a large bias (Figure 24), which is a known issue with sonic data. More surprising 

is the poor correlation coefficient (0.56), which suggests that Gill data are not accurate for long term 

(1 100 sec) averages.  

 

Figure 24. Comparisons between Gill and WXT sonic air temperature 



Please note that other comparisons were done, with Gill data converted to true air temperature with 

refractometer or Licor data (not shown), and that the results were qualitatively the same as in Figure 

24. 

2.2.2 Comparison to Licor data 

2.2.2.1 Ancillary sensors 

The Licor has its own meteorological sensors for air temperature and pressure. Many data from 

these sensors have unrealistic values, thus they were avoided for the following comparisons, with 

respect to WXT data (Figure 15). Please note that the Licor is placed one meter above the WXT 

station on the mast. 

 

Figure 25. Comparisons between Licor (y-axis) and WXT data (x-axis) 

Both the pressure and the temperature are significantly underestimated with respect to WXT data. 

As a result, we chose to use the averaged WXT data to calculate Licor humidity (given in g/m3), 

instead of using the Licor temperature and pressure sensors. 

The results are presented in Figure 26. They show that a majority of points are underestimated with 

respect to WXT humidity data, by -2% and -0.5 g/kg, but that a large group of points is 

overestimated, as already noted for the wind speed. 

 

Figure 26. Comparisons between Licor (y-axis) and WXT data (x-axis) 



In the previous section, we have shown that the WXT humidity was under-estimated by 4% with 

respect to the BATOS humidity, which again increases the uncertainty on humidity data. Indeed, the 

biases are as follows: humidity BATOS > humidity WXT > humidity LICOR. 

As for the wind comparisons, we checked that the outliers were not concentrated at some days of 

the experiment (not shown), therefore they are challenging to avoid without seriously reducing the 

number of points. 

2.2.2.2 Specific humidity from refractometer and from Licor data 

In this section we compare the standard deviation of Licor and refractometer humidity. Power 

spectra of humidity from the two instruments will be compared in section 3. 

 

Figure 27. Comparisons between Licor (y-axis) and WXT data (x-axis) 

Large values of the standard deviation of humidity are present but they are not shown in Figure 27, 

for readability. Apart for a group of outlier points, for which the standard deviation of Licor data are 

strongly overestimated with respect to refractometer data, the two types of data have a good fit to 

each other, with a slight overestimation for the refractometer, which is encouraging. 

2.3 Wind distortion 

The vertical wind angle is 5° at 0° azimuth angle for Gill wind data (Figure 27). For +/-40° azimuth 

angles, the vertical angle ranges from 3.5° to 7°, which translates into a vertical wind component 

from 0.4 to 1.4 m/s. This is consistent with the simulations in Bourras et al. (2009). 

However, for EUREC4A data, we checked that accounting for the vertical wind angle in the 

calculation of the wind module resulted in an increase of the wind by 0.02 m/s to 0.1 m/s (not 

shown), which is negligible (see also section 3). 



 

Figure 27. Vertical wind component (left) and vertical wind angle (right) 

2.4 Comparison to OCARINA data 
OCARINA is a drifting platform that has negligible flow distortion (Bourras et al., 2014 and 2019). It 

was deployed four times during the campaign (red dots in Figure 28). 

 

Figure 28. Locations of the OCARINA deployments (red dots) compared to the available Atalante flux 

mast data (white dots)  

For comparing OCARINA data to Atalante data, we restricted the data choice to maximum time 

deviations of +/-1 hour. It results in only 21 points of comparison and to a maximum distance of 15 

km between the two platforms (Figure 29). 



 

Figure 29. Data selected for comparison between OCARINA and Atalante data. The distance (lower 

panel) and the time diference (upper panel) are plotted as a function of time. 

Given the small number of points of comparison, the comparisons presented hereafter are just an 

indication and not a reliable comparison, from a statistical point of view. 

The first raw comparisons are made with data taken at different altitudes and depths (Figure 30). 

They show acceptable correlation coefficients, larger than 0.67. There is a noticeable positive bias of 

OCARINA specific humidity data compared to Atalante WXT data (+0.74 g/kg).  

 

Figure 30. Comparison between meteorological data from OCARINA and Atalante at their respective 

heights of measurements 



The comparison in terms of wind speed indicates that the Atalante wind speed (Gill data) is larger in 

average than the OCARINA wind speed, by +0.8 m/s (Figure 31). A positive bias was expected given 

the 15 m in height difference between the two sensors.   

 

Figure 31. Wind speed comparison 

The comparisons in terms of 10 m-neutral variables bring a further insight, although it is anticipating 

on section 4 results (application of the bulk COARE 3.0 algorithm), as shown in Figure 32. 

 

Figure 32. 10 m-neutral wind, temperature, and humidity comparison 



OCARINA U10N are overestimated by 0.5 m/s with respect to Atalante U10N estimates (Figure 32), 

which may suggest that Atalante data are affected by flow distortion, which was expected according 

to the simulations (-0.2 m/s, section 2.2.1.1). 

The comparisons for q10N (the neutral specific humidity at 10 m) shows a negative bias of 0.5 g/kg, 

which means that Atalante WXT data converted to 10 m neutral conditions are overestimated with 

respect to OCARINA data. Therefore, 10 m-neutral humidity WXT Atalante > 10 m-neutral humidity 

WXT OCARINA. 

2.5 Conclusions 

The observed bias are: 

 Air temperature 

o WXT > BATOS (+0.12 °C) 

o WXT > LICOR (+0.4 °C) 

o T10N ATALANTE WXT > T10N OCARINA WXT (+0.04°C) 

 Atmospheric pressure 

o WXT < BATOS (-0.05 hPa) 

o WXT > LICOR (+0.5 hPa) 

o ATALANTE WXT < OCARINA WXT (-2 hPa) 

 Relative humidity 

o WXT < BATOS (-4.03%) 

o WXT > LICOR (+2%) 

 Specific humidity 

o WXT < BATOS (-0.77 g/kg) 

o WXT > LICOR (+0.3 g/kg) 

o Q10N ATALANTE WXT > Q10N OCARINA WXT (+0.5 g/kg) 

 Wind speed 

o WXT < BATOS (-0.62 m/s) 

o WXT > GILL (+0.42 m/s) 

o GILL < BATOS (-1.04 m/s) 

o U10N ATALANTE GILL < U10N OCARINA GILL (-0.51 m/s) 

 Incoming solar radiation flux 

o CNR4 < BATOS (-4.44 W/m2) 

 Sea surface temperature 

o SST ATALANTE < SST OCARINA (-0.04°C) 

 

According to the WXT datasheet, the meteorological data have the following accuracy: 

 Air pressure : +/-0.5 hPa 

 Air temperature : +/-0.3°C 

 Relative humidity: +/-3% 

 Wind speed : +/-0.3 m/s (or 3%, whichever is the larger) 

Overall, the comparisons presented above show that our data generally comply with the relatively 

low accuracy of the WXT sensors. However, we note that: 



 Atalante Gill wind speed data are possibly underestimated by 0.3 m/s (flow slew down by 

distortion) 

 The measurement of absolute specific humidity is problematic, because we observe biases 

from -0.8 to +0.5 g/kg  

The above numbers give an order of magnitude of the measurement uncertainties. In doubt, in the 

following, we prefer not to apply any correction to the meteorological data. 

3. Spectral analysis of turbulent data 

3.1 Power spectra 

The envelope of the power spectra for the daily longitudinal wind component (Gill HS-50 data) shows 

a clear inertial sub-range between 2 and 7 Hz (Figure 33). 

 

Figure 33. Normalized daily power spectra of the u-component of the wind vector, multiplied by f5/3 

The equivalent spectrum averaged over the entire data set further confirms that the [2 , 7] Hz range 

corresponds well to the sub-range (Figure 34). Hereafter, we even restrict this range to [3 , 6 ] Hz for 

safety. 

 

Figure 34. Averaged power spectra of the u-component of the wind vector, multiplied by f5/3 



The vertical isotropy Ew(f)/Eu(f) is quite well respected in the inertial sub-range (daily values close to  

the reference value of 4/3), as shown in Figure 35. However, the horizontal isotropy Ev(f)/Eu(f) is not 

well respected (Figure 36). 

 

Figure 35. Departure of data from theoretical vertical isotropy (4/3)  

 

Figure 36. Departure of data from theoretical horizontal isotropy (4/3) 

The power spectra for temperature do not generally follow a -5/3 log-log slope, which was also 

observed in earlier campaigns, even with OCARINA data that have small airflow distortion (Bourras et 

al., 2019). Hereafter, we use data in the range [1, 2] Hz. The envelope of curves is coherent, and 

there is only one day with outlier data (Figure 37). 



 

Figure 37. Normalized daily power spectra of the sonic temperature, multiplied by f5/3 

The sub-range in refractometer specific humidity data is well respected for certain days over a large 

[1 , 10] Hz range. Unfortunately, some of the daily spectra are increasing at frequencies larger than 2 

Hz. In addition, there are two days with outlier data, for which the spectra are oscillating and have 

large values. As a compromise, we choose the [1 , 2] Hz interval as the sub-range in humidity. 

 

Figure 38. Normalized daily power spectra of the refractometer specific humidity, multiplied by f5/3 

The Licor spectra were more challenging to process as they included invalid data (Nan), which 

occurred for 2% of the data. After correction, i.e. the “Nan” values were replaced by arbitrary 

averaged values, we obtained the power spectra of Figure 39. 



 

Figure 39. Normalized daily power spectra of the LICOR specific humidity, multiplied by f5/3 

According to Figure 39, the -5/3 slope is only respected for a small number of days (lower curves in 

Figure 39). The other daily spectra are all increasing with frequency, which is not elucidated at the 

stage of the processing. 

3.2 Analysis of the co-spectra 

3.2.1 Wind co-spectra 

 

Figure 40. Averaged wind co-spectra, uncorrected (yellow), corrected with the DS method (purple), 

and correction with the SC method (black). 

The wind co-spectra averaged over the whole data set, with no filtering of the w-component (in 

yellow) is very different from the reference spectrum of Kaimal et al. (1972). It has a zone of negative 

covariances in the turbulence production range, and it presents a large peak at fz/U=0.3, attributed 

here to the vertical motion of the ship (Figure 40). If the vertical wind component is corrected with a 



basic subtraction of speed vertical speed (DS method, see Bourras et al., 2019), the large peak has a 

reduced intensity (curve in purple). The application of a spectral coherence (SC method, see Bourras 

et al., 2019) is the only method that efficiently removes the motion peak (black curve), and makes it 

coherent with the co-spectrum of Kaimal et al. (1972), which is better shown in Figure 41. This closer 

look at the co-spectrum reveals that it is more spread over frequencies than the reference Kaimal et 

al. (1972) co-spectrum. In addition, there is less energy in our data in the turbulence production 

frequency range (fz/U=0.1).  

 

Figure 41. Averaged wind co-spectra with the SC correction of the vertical wind component 

3.2.2 Humidity co-spectra 

 

Figure 42. Averaged wind-refractometer humidity co-spectra, with the SC correction of the vertical 

wind component. 



The averaged co-spectrum for refractometer specific humidity fluctuations has a large production 

zone, larger than the one of the reference (function H(z/L) in Kaimal et al., 1972) and it is shifted 

toward lower normalized frequencies. Again, the overall energy is smaller than in the reference 

spectrum (Figure 42).  

The co-spectrum for the LICOR is noisy thus impossible to use (Figure 43). 

 

Figure 43. Averaged wind-LICOR humidity co-spectra, with the SC correction of the vertical wind 

component. 

3.2.3 Temperature co-spectra 

We present here the vertical wind versus sonic temperature averaged co-spectrum (Figure 44, black 

curve). Next, we plot the co-spectrum for air temperature, with humidity correction done with 

refractometer data (in red). 

 

Figure 44. Vertical wind versus sonic (black) and true air temperature (red) averaged co-spectra, with 

the SC correction of the vertical wind component. 



The temperature co-spectra are very noisy and do not even have a bell-like shape like in Kaimal et al. 

(1972). 

3.3 Conclusions 

In the wind power spectra, the inertial sub-range is well identified at [3.6] Hz. The vertical isotropy is 

well respected, as opposed to the horizontal isotropy of turbulence. Overall, this analysis suggests a 

good potential of the EUREC4A data for calculating the momentum flux with the inertial-dissipation 

(ID) method, largely based on the spectral properties of the turbulence in the inertial sub-range. 

The temperature spectra do not really follow a -5/3 log-log slope, which has already observed in a 

number of earlier campaigns. In the [1 ; 2] Hz range, the -5/3 slope is reasonably respected, a choice 

that has already been made for earlier experiments. 

Many of the daily humidity spectra do not follow the -5/3 log-log slope, which is unexplained at this 

stage. In this respect, the refractometer data behave better than the LICOR data. The [1 ;2] Hz sub-

range was finally selected as a compromise, but the estimation of the latent heat fluxes with the ID 

method promises to be challenging. 

The wind co-spectra clearly show that a correction of the vertical wind component is required, and 

that the SC correction method performs better than the DS correction method. Unfortunately, with 

the SC correction applied, the obtained co-spectra are generally underestimated with respect to the 

reference co-spectrum of Kaimal et al. (1972), which implies that the calculation of the momentum 

flux with the EC method will be underestimated. 

The humidity co-spectra computed with LICOR data are too noisy to be used. For refractometer data, 

the averaged co-spectrum presents a bell shape, like in Kaimal et al. (1972). Unfortunately, the total 

energy of the co-spectrum is smaller than in the reference co-spectrum, which again suggests that 

the EC latent heat fluxes will be underestimated. 

Last, the temperature co-spectra are very noisy. 

Overall, the momentum flux or u* could be estimated successfully with the ID method (next section), 

and the heat fluxes will be more challenging to estimate accurately.  

The time pseudo-structure functions were calculated. Their analysis is not shown here as they do not 

bring new information compared to what was is presented above. 

4. Turbulent fluxes 
As in Bourras et al. (2009), the turbulent fluxes and quantities are calculated with three methods: the 

ID method, the EC method and the bulk method (COARE algorithm, Fairall et al., 2003). 

Here, the methodology used is to launch a first reference run of the Albatros flux calculation 

algorithm with common options that are: no distortion correction, application of the SC correction of 

the w-wind component of L. Baggio (Bourras et al. 2019), and no application of imbalance term on 

the ID method. In the COARE, the roughness length parametrization follows Smith (1988), and the 

options jwarm and jcool are set to zero, which means that the radiation fluxes are not accounted for 

in the COARE algorithm. There are several other options that are enabled and that will be described 

in the following section (filtering, time lag correction). 



In a second time, various options are applied during the calculation, and the differences obtained 

with respect to the reference run are analyzed. 

4.1 Friction velocity u* 

4.1.1 Reference run 

 

Figure 45. u* comparison, as calculated with the EC, ID and bulk methods (reference run) 

The ID u* estimates have a good fit to the bulk u* values (Figure 45, upper right). Despite no 

imbalance term was accounted for in the Turbulent Kinetic Energy (TKE) equation, there is a 

negligible bias (-0.01 m/s), which contrasts with AMMA 2006 data (Bourras et al., 2009) where a -

0.46 z/L imbalance had to be accounted for. The standard deviation of the difference between ID u* 

and bulk u* is 0.03 m/s, which is good. 

The EC u* estimates are well correlated to ID u* values (rms=0.819, Figure 45 lower right), but there 

is a significant bias (0.04 m/s), which is indicative of a lack of energy in EC u* estimates, possibly due 

to wind flow distortion, and which is consistent with section 3 conclusions. 

The comparison between EC u* and bulk u* estimates is degraded compared to the other 

comparison (Figure 45, upper left). 

4.1.2 Application of the distortion correction 

The application of the vertical angle correction to the mean wind does not significantly affect the 

results (not shown). The comparison between ID* and EC* is slightly improved, but the other 

comparisons are slightly degraded, as reported hereafter. 

 

 



u* comparison Correlation  bias Slope of linear fit 

EC-bulk 0.674 0.05 -0.07 0.7 

ID-bulk 0.894 0.03 -0.01 0.96 

ID-EC 0.775 0.04 0.06 0.8 

4.1.3  Correction de la vitesse verticale du vent 

If the vertical wind motion is not accounted for, the comparison between EC u* and bulk u*bulk is 

seriously degraded, as expected according to section 3 results. 

u* comparison Correlation  bias Slope of linear fit 

EC-bulk 0.178 0.09 -0.04 0.58 

ID-bulk 0.892 0.03 -0.01 0.97 

ID-EC 0.465 0.07 0.03 0.38 

 

4.1.4  No filtering of EC data 

In the reference run, a high-pass filter was applied to the EC time series (for cleanup), at a frequency 

of fz/U=0.01. It this filter is disabled, the comparisons of section4.1.1 are slightly affected. 

Specifically, the slope between EC u* and ID u* is decreased to 0.66. In conclusion, the filtering 

improves the comparisons. 

u* comparison Correlation  bias Slope of linear fit 

EC-bulk 0.632 0.05 -0.05 0.75 

ID-bulk 0.892 0.03 -0.01 0.97 

ID-EC 0.721 0.05 0.04 0.66 

 

4.1.5 No phase lag correction (lag velz’;w’ and lag w’;q’) 

In the reference run, time lags are arbitrarily corrected. The maximum correlation is found between 

the time series, by gradually shifting one of the time series. The lag was searched in the following 

ranges, +/-200 points for velz’;w’ and 500 points for w’;q’, which correspond to 6 and 15 seconds of 

maximum time shift, respectively.  

If the time lag correction is not accounted for, the comparison between EC u* and ID u* is slightly 

improved. 

u* comparison Correlation  bias Slope of linear fit 

EC-bulk 0.738 0.04 -0.05 0.77 

ID-bulk 0.893 0.03 -0.01 0.97 

ID-EC 0.827 0.03 0.04 0.86 

 

4.1.6 Radiation fluxes in the bulk algorithm 

If  jwarm=1 and jcool=1 in the bulk algorithm, the impact on the u* comparisons is negligible. 

u* comparison Correlation  bias Slope of linear fit 

EC-bulk 0.725 0.04 -0.05 0.75 

ID-bulk 0.893 0.03 -0.01 0.97 

ID-EC 0.819 0.04 0.04 0.86 

 



4.2 Latent heat flux  

 

Figure 46. LE comparison, calculated with the EC, ID and bulk methods (reference run). 

Refractometer data are plotted in blue, while LICOR data are plotted in red. 

There is a good agreement between ID LE and bulk LE in correlation (0.876) and standard deviation of 

the difference (= 17.4 W/m2), as shown in Figure 46. Unfortunately, there is a large bias (-28.8 

W/m2) for refractometer data, and the slope of linear fit is far from unity (0.78). This behavior of ID 

LE estimates was already observed during AMMA 2006 (Bourras et al., 2009).  

Most of the EC LE estimates have almost null values, which is attributed to the lack of time 

coherence between Gill and LICOR data, as anticipated in section 3 with the analysis of the co-

spectra.  

 

Figure 47. Comparison between LICOR and refractometer ID LE estimates 



A further comparison of Refractometer ID LE estimates to LICOR ID LE estimates reveals that, apart 

for a group of outlier points, there is a systematic deviation of + 10 W/m2 (LICOR estimates are larger 

than the refractometer estimates), as shown in Figure 47. The same bias was already observed with 

the AMMA 2006 data. 

In Figures 46 and 47, it is encouraging to note that LICOR and refractometer ID LE estimates have a 

good correlation and standard deviation of the difference (except for the outlier points). It suggests 

that the underestimation of the ID LE estimates compared to bulk LE estimates is confirmed by two 

independent instruments. 

4.3 Buoyancy flux 

 

Figure 48. Comparisons for the buoyancy fluxes 

The comparison between ID HSv and bulk HS is satisfying (Figure 48), which is not the case for the 

comparison to EC HSv estimates. 

With radiation fluxes enabled (jwarm=jcool=1) in the bulk algorithm, the comparison between ID HSv 

and Bulk HSv is slightly degraded, except in terms of slope of linear fit. As a result, the use of the 

radiation option in the bulk algorithm may be discussed. 

HSv comparison Correlation  bias Slope of linear fit 

ID-bulk 0.838 3.85 4.99 1.03 

 



4.4 Sensible heat flux 

 

Figure 49. Comparisons for the sensible fluxes 

As expected, because of the large biases in LE comparisons (section 4.2), the comparisons are 

disappointing for the sensible heat flux (Figure 49). In doubt, the bulk values are used in the following 

for producing the flux data set. 

4.5 Comparison to OCARINA fluxes 

 

Figure 50. Comparison between Atalante and OCARINA bulk turbulent fluxes 



Please note, as in section 2.4, that very few points of comparisons are available. Despite this, the 

coefficients of correlation of the comparisons are encouraging, as they are all larger than 0.9 (Figure 

50). 

The Atalante u* values are underestimated with respect to OCARINA data (bias=-0.02 m/s and slope 

of OCARINA minus Atalante equal to 1.16). This is consistent with the U10N difference observed in 

section 2.4 

The sensible and buoyancy fluxes have a good statistical agreement, with biases and standard 

deviation of error within 2 W/m2. 

The OCARINA LE values are largely overestimated with respect to Atalante LE values, by +27 W/m2, 

and the slope of linear fit is way larger than unity (1.4). This confirms that the accurate estimation of 

the latent heat flux is problematic for EUREC4A data. 

5. EUREC4A flux data set 
In this section, we present the time series and the statistical elements for the reference run 

(variables and fluxes). The turbulent fluxes considered are the bulk fluxes. 

Variable Unit Mean value RMS deviation Minimum Maximum 

Incoming Solar flux (positive) (W/m2) 248.92  325.74  -4.51  956.97 

Upward solar flux (positive) (W/m2) 14.94  19.54  -0.27  57.42 

Downward infrared flux (positive) (W/m2)  419.95  13.33  386.64  475.80 

Upward infrared flux (positive) (W/m2)  455.29  1.65  449.13  458.33 

Net shortwave flux  (W/m2)  233.99  306.20  -4.24  899.55 

Net longwave flux  (W/m2)  -35.34  13.23  -69.74  19.42 

Net radiation flux  (W/m2)  198.65  307.09  -71.68  860.91 

Turbulent sensible heat flux (W/m2)  -4.21  4.86  -27.43  7.18 

Turbulent latent heat flux  (W/m2)  -174.49  38.09  -278.59  -80.43 

Surface heat budget (W/m2) 19.95  315.01  -333.54  770.97 

Wind speed @ 17 m (m/s)  8.15  1.45  4.01  11.88 

Sea surface temperature  (°C)  27.32  0.27  26.30  27.82 

Air temperature @ 17 m (°C)  26.78  0.43  24.43  27.50 

Surface specific humidity  (g/kg)  22.26  0.37  20.88  22.94 

Air specific humidity @ 17 m  (g/kg)  15.55  0.82  13.18  17.35 

Atmospheric pressure @ 17 m  (hPa)  1012.49  1.49  1008.42  1016.42 

Turbulent friction velocity  (m/s)  0.28  0.05  0.13  0.44 

Monin-Obukhov ratio  (no unit)  -0.17  0.12  -1.25  -0.00 

Wind stress  (N/m2)  0.09  0.04  0.02  0.22 

10 m-neutral wind speed  (m/s)  8.06  1.35  4.24  11.54 

10 m-neutral air temperature  (°C)  26.92  0.45  24.18  27.65 

10 m-neutral specific humidity (g/kg)  15.43  0.85  12.91  17.17 

 







 

 

List of variables in the flux dataset: 

Name of variable Variable Example value Standard Unit Long name 

lon  Longitude -59.160592  degrees_east In decimal 
degrees 

lat  Latitude 12.780028  degrees_north In decimal 
degrees 

pair  Atmospheric 
pressure 

1010.60  hPa Atmospheric 
pressure at 17 m 

tair  Air temperature 25.28  degC Air temperature 
at 17 m 

rho  Air density 1.168  kg m-3 Air density at 17 
m 

hur  Relative humidity 
of air 

0.78    1 Relative humidity 
at 17 m 

sst  Sea surface 
temperature 

27.304  degC SST from R/V 
sensor 

rlds Downwelling 
infrared flux 

416.6 W m-2 Downwelling 
longwave 

radiation flux, 
positive 



downward 

rlus  Upwelling 
infrared flux 

455.2  W m-2 Upwelling 
longwave 

radiation flux, 
positive upward 

rsds  Downwelling 
solar flux 

-1.2  W m-2 Downwelling 
shortwave 

radiation flux, 
positive 

downward 

rsus  Upwelling solar 
flux 

-0.1  W m-2 Upwelling 
shortwave 

radiation flux, 
positive upward 

wspd  Measured wind 
speed 

7.93  m s-1 Magnitude of 
wind velocity with 

respect to 
ground, at a 

height of 17 m 

u10n  10 m-neutral 
wind speed 

8.02  m s-1 Equivalent neutral 
wind extrapolated 
at a 10-m height, 

from bulk 
calculation 

t10n   25.35 degC Equivalent neutral 
air temperature 
extrapolated at a 
10-m height, from 

bulk calculation 

q10n   15.34  g kg-1 Equivalent neutral 
air specific 
humidity 

extrapolated at a 
10-m height, from 

bulk calculation 

ustar_bulk  Friction velocity 0.28  m s-1 Bulk turbulent 
surface friction 
velocity, COARE 
3.0 (please see 

header), zo 
parameterization 
from Smith (1988) 

hsv_bulk  Buoyancy flux 33.80  W m-2 Bulk turbulent 
surface buoyancy 

flux, positive 
upward, from 

bulk calculation 

hfss_bulk  Sensible heat flux 20.43  W m-2 Bulk turbulent 
surface sensible 

heat flux, positive 
upward, from 



bulk calculation 

hfls_bulk  Latent heat flux 176.00  W m-2 Bulk turbulent 
surface latent 

heat flux, positive 
upward, from 

bulk calculation 

zL_bulk  Monin Obukhov 
ratio 

-0.301 1 Monin-Obukhov 
ratio, which 

quantifies surface 
boundary layer 
stability, from 

bulk calculation 

 

6. Conclusions 
The comparison to OCARINA data suggests that: 

 The Atalante u* values are possibly underestimated by 0.02 m/s. It is suspected that the 

airflow slows down at the level of the flux mast. 

 The estimation of the bulk latent heat flux has a large uncertainty of +/-30W/m2 

The EC fluxes are not accurate and are generally underestimated compared to the bulk or ID LE 

estimates. This is possibly explained by the position of the flux mast which damps the turbulent 

fluctuations. For future campaigns, the mast should be placed at the bow of the ship (which was 

already suspected in Bourras et al., 2009).  

As the EUREC4A EC data lack of accuracy, they cannot be used to improve or contest the existing bulk 

parameterizations of the exchange coefficients or of the roughness lengths for wind, temperature or 

humidity. 

LICOR data are problematic to use because of issues with time drift in data. However, LICOR and 

refractometer ID LE values have a good fit to each other in terms of correlation coefficient and 

standard deviation of the difference (20 W/m2). The LICOR ID LE values are larger than the 

refractometer estimates by 10 W/m2, as already observed in Bourras et al. (2009). 

Humidity is challenging to measure during EUREC4A. This should be seriously addressed for the 

upcoming experiments. Specifically, 

 The humidity instruments should go back to manufacturers for calibration (WXT 

Atalante, LICOR, and WXT OCARINA). In addition, the LICOR temperature and air 

pressure data are doubtful. 

 The humidity data from the different instruments should be further compared in situ 

(WXT and LICOR) 

 The humidity from EUREC4A, AMMA 2006 and AMOP 2014 past campaigns should be 

further analyzed. It would help elucidate the issues with the position of the mast, with 

the estimation of humidity and of the latent heat flux. The following issues have to be 

addressed: 

o Under estimation of ID LE estimates compared to bulk LE values 



o Possible modification of the Corrsin constant for humidity 

The imbalance term of 0.46 z/L of the TKE equation used in Bourras et al. (2009) is not required for 

EUREC4A ID data, which should be further investigated. 

More points of comparison between Atalante and OCARINA data should be obtained for future 

campaigns. For EUREC4A, the four available OCARINA deployments are insufficient. 

The LICOR CO2 data were not considered in this document, but they are available upon request.  

The -5/3 slope is not respected for temperature, as it is systematically observed for all campaigns. 

This issue must be further addressed. 

The synchronization of LICOR time data should be reworked. As the acquisition system is configured 

now, it is impossible to synchronize LICOR data to other instrument data. 

Some Gill data are systematically missing in the recorded files, and are dated according to PC-flux 

data. The acquisition system is not fully satisfying as it is presently configured. 
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