Linking Danube River Activity to Alpine Ice-Sheet Fluctuations during the Last Glacial (ca. 33-17 ka BP): insights into the continental signature of Heinrich Stadials

Date 2020
Author(s) Martinez-Lamas RuthORCID1, Toucanne SamuelORCID2, Debret MaximeORCID1, Riboulot VincentORCID2, Deloffre Julien1, Boissier AudreyORCID2, Cheron SandrineORCID2, Pitel-Roudaut MathildeORCID2, Bayon GermainORCID2, Giosan LiviuORCID3, Soulet GuillaumeORCID2
Affiliation(s) 1 : Université de Rouen, France
2 : IFREMER, France
3 : Woods Hole Oceanographic Institution, USA
DOI 10.17882/70660
Publisher SEANOE
Abstract

Offshore archives retrieved from marine/lacustrine environments receiving sediment from large river systems are valuable Quaternary continental records. In the present study, we reconstruct the Danube River activity at the end of the last glacial period based on sedimentological, mineralogical and geochemical analyses performed on long-piston cores from the north-west Black Sea margin. Our data suggest that the Danube River produced hyperpycnal floods throughout the ca. 33-17 ka period. Four main periods of enhanced Danube flood frequency, each of 1.5-3 kyr duration, are recorded at ca. 32.5-30.5 ka (equivalent to the first part of Heinrich Stadial -HS- 3), at ca. 29-27.5 ka (equivalent to Greenland Stadial 4), at ca. 25.3-23.8 ka (equivalent to HS 2) and at ca. 22.3-19 ka. Based on mineralogical and geochemical data, we relate these events to enhanced surface melting of the Alpine Ice Sheet (AIS) that covered ~50,000 km² of the Danube watershed at the Last Glacial Maximum (LGM). Our results suggest that (i) the AIS growth from the inner Alps to its LGM position in the northern Alpine foreland started from ca. 30.5 ka, ended no later than ca. 25.3 ka, and was interrupted by a melting episode ca. 29-27.5 ka; (ii) the AIS volume drastically decreased from ca. 22.3 to 19 ka, as soon as summer insolation energy at the AIS latitude increased; and (iii) HSs strongly impacted the AIS mass balance through enhanced summer surface melt. This, together with evidence of severely cool winters and the rapid expansion of sea ice in the North Atlantic, implies strong seasonality in continental Europe during stadials.

Licence CC0
Data
File Size Format Processing Access
GAS-CS01 dataset 924 KB XLS, XLSX Quality controlled data Open access
MD04-2790 dataset 924 KB XLS, XLSX Quality controlled data Open access
Top of the page

How to cite 

Martinez-Lamas Ruth, Toucanne Samuel, Debret Maxime, Riboulot Vincent, Deloffre Julien, Boissier Audrey, Cheron Sandrine, Pitel-Roudaut Mathilde, Bayon Germain, Giosan Liviu, Soulet Guillaume (2020). Linking Danube River Activity to Alpine Ice-Sheet Fluctuations during the Last Glacial (ca. 33-17 ka BP): insights into the continental signature of Heinrich Stadials. SEANOE. https://doi.org/10.17882/70660


In addition to properly cite this dataset, it would be appreciated that the following work(s) be cited too, when using this dataset in a publication :


Martinez-Lamas Ruth, Toucanne Samuel, Debret Maxime, Riboulot Vincent, Deloffre Julien, Boissier Audrey, Cheron Sandrine, Pitel Mathilde, Bayon Germain, Giosan Liviu, Soulet Guillaume (2020). Linking Danube River activity to Alpine Ice-Sheet fluctuations during the last glacial (ca. 33–17 ka BP): Insights into the continental signature of Heinrich Stadials. Quaternary Science Reviews, 229, 106136-. https://doi.org/10.1016/j.quascirev.2019.106136